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Abstract—Recent standardization efforts focus on a number of
lightweight IP security protocol variants for end-to-end security
in the Internet of Things (IoT), most notably DTLS, HIP DEX,
and minimal IKEv2. These protocol variants commonly consider
public-key-based cryptographic primitives in their protocol de-
sign for peer authentication and key agreement. In this paper,
we identify several performance and security issues that originate
from these public-key-based operations on resource-constrained
IoT devices. To illustrate their impact, we additionally quantify
these protocol limitations for HIP DEX. Most importantly, we find
that public-key-based operations significantly hamper a peer’s
availability and response time during the protocol handshake.
Hence, IP security protocols in the IoT must be tailored to
reduce the need for expensive cryptographic operations, to protect
resource-constrained peers against DoS attacks targeting these
cryptographic operations, and to account for high message
processing times. To this end, we present three complementary,
lightweight protocol extensions for HIP DEX: i) a comprehensive
session resumption mechanism, ii) a collaborative puzzle-based
DoS protection mechanism, and iii) a refined retransmission
mechanism. Our focus on common protocol functionality allows
to generalize our proposed extensions to the wider scope of
DTLS and IKE. Finally, our evaluation confirms the considerable
achieved improvements at modest trade-offs.

I. INTRODUCTION

Standardization bodies including ETSI, the IETF, and the
ZigBee Alliance are heavily pushing towards IP technology
for transparent end-to-end connectivity between constrained
devices and services in the Internet of Things (IoT). To
secure these end-to-end connections, focus has shifted towards
lightweight variants of existing IP security protocols, most
notably Datagram TLS (DTLS) [1], the HIP Diet EXchange
(DEX) [2], and minimal IKEv2 [3]. While DTLS optionally
provides a pre-shared key-based handshake, HIP DEX and
minimal IKEv2 mandate public-key cryptography in their
protocol design. Although public-key cryptography is sensi-
ble specifically for peer authentication across administrative
domains, its use renders the application of these protocols in
constrained network environments challenging.

We identify three major challenges in the handshake phase
of the considered protocols that directly stem from the use
of public-key cryptography and strongly hinder the protocols’
applicability in the IoT. First, the use of public-key primitives
in the protocol handshakes requires a significant amount of
transmissions and computation time. If constrained devices
are to afford this overhead regularly, sleep deprivation and
power-intensive radio usage decrease the lifetime of energy-
constrained devices. More importantly, the devices are unable

to fulfill their original tasks, e.g., processing of sensed informa-
tion or packet forwarding, while the CPU is busy performing
cryptographic operations. Second, a single malicious host can
misuse the handshake protocols to mount Denial of Service
(DoS) attacks that target the constrained resources of an
IoT device, e.g., by performing multiple handshakes in short
succession. The standardized DoS protection mechanisms of
IP security protocols, however, do not suffice to defend against
such attacks [4]. Third, retransmissions of handshake mes-
sages, including those that cause expensive operations, com-
monly follow fixed timeout-based approaches. Hence, these
mechanism do not account for the processing time of said
operations and commonly cause premature retransmissions.

In this paper, we detail the above challenges in constrained
network environments and quantify their impact for one of the
candidate protocols. We choose HIP DEX for our analysis as
it already features a concise handshake that has specifically
been designed for constrained devices. Hence, it allows us to
isolate the impact of public-key-based operations on a protocol
handshake. Based on our analysis, we propose three comple-
mentary and lightweight protocol extensions for HIP DEX.
Addressing the above challenges respectively, we propose i) a
comprehensive session resumption mechanism to reduce the
computation, memory, and transmission costs of the protocol
handshake, ii) a collaborative puzzle-based Denial of Service
protection mechanism that accounts for device and network
heterogeneity, and iii) a refined retransmission mechanism that
takes the varying processing times of handshake messages into
account. Notably, we show that our protocol extensions gen-
eralize to DTLS and minimal IKEv2. Our evaluation confirms
the considerable improvements of our extensions compared to
an unmodified HIP DEX at modest memory tradeoffs.

This paper is structured as follows. Section II introduces
the network scenario and gives a brief overview of the
HIP DEX protocol. We then discuss our identified protocol
performance and security issues with respect to constrained
network environments in Section III. In Section IV, we present
our proposed protocol extensions that further tailor the HIP
DEX protocol to the characteristics of IoT network scenarios.
Here, we additionally highlight how these extensions can be
integrated in the IP security protocols DTLS and minimal
IKEv2. We then discuss the security considerations of our
proposed protocol extensions in Section V and present our
evaluation results in Section VI. Finally, Section VII discusses
related work and Section VIII concludes our paper.

II. PREREQUISITES

We now briefly present our abstract network scenario and
the HIP DEX protocol as the basis for our analysis.978-1-4799-1270-4/13/$31.00 c©2013 IEEE
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Fig. 1. Resource-constrained devices (D) communicate with each other and
with local or Internet-based services (S) via a gateway (GW). Arrows indicate
communication paths for specific security protocol handshakes.

A. Network Scenario

Figure 1 illustrates our abstract network scenario consisting
of constrained devices in the IoT domain, services that are
located in the local network or the Internet, and gateways
that interconnect the different network domains. Constrained
devices are equipped with only a few MHz of computational
power, several kilobytes of RAM and several tens of kilobytes
of ROM. Moreover, they may be battery-powered and are
assumed to communicate over lossy wireless links, e.g., as pro-
vided by IEEE 802.15.4. Constrained devices can initiate new
connections with other constrained devices or services, or they
may respond to incoming connection requests. Gateways range
from commodity routers to dedicated servers and connect
the IoT domain to the Internet via a broadband connection.
Services are assumed to run on common server hardware.

B. HIP DEX

The HIP Diet EXchange (DEX) [2] is a key management
protocol that provides secure end-to-end connections in the
IoT. It is currently being standardized at the IETF as a protocol
variant of the Host Identity Protocol (HIP) [5]. HIP DEX
preserves the general HIP architecture and protocol semantics.
In particular, it inherits the cryptographic namespace that uses
the public key of a device as its Host Identity (HI). This
namespace is used to build a new layer in the network stack
that is located between the network and the transport layer.
A cryptographic fixed-length representation of the HI, the
Host Identity Tag (HIT), serves as a stable device identifier
at this layer. This allows to reduce the role of IP addresses to
changeable locators and affords verifiable device identification
as well as device mobility as additional protocol features.

From HIP, HIP DEX additionally adopts the out-of-band
notification message type that enables the peers to com-
municate auxiliary information such as protocol errors or
negotiation failures during the defined message exchanges.
Finally, HIP DEX inherits the session lifecycle from HIP that
begins with the session establishment handshake and concludes
with the session tear down exchange. This enables the peers
to explicitly close a connection and to flush all session-related
protocol state at the end of the session lifecycle.

Notably, HIP DEX introduces two key differences to
standard HIP that account for the characteristics of constrained
network environments. First, it defines an aggressive retrans-
mission mechanism to handle packet loss in constrained wire-
less network environments. This retransmission mechanism
requires the Initiator to continually send I1 and I2 packets
at a short interval in the order of milliseconds. The Responder
then must reply to each Initiator-side packet. Second, HIP
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Fig. 2. Protocol diagram of the refined HIP DEX handshake.

DEX forfeits ephemeral Diffie-Hellman (DH) keys and digital
signatures in its protocol design. Instead, it defines a refined
session establishment handshake that is based on static DH
keys for mutual peer authentication and key agreement.

As shown in Fig. 2, the refined session establishment hand-
shake consists of a four-way handshake between an Initiator
and a Responder. The Initiator triggers the handshake with an
I1 message. The next messages implement a standard authen-
ticated DH key agreement. Specifically, the peers exchange
their public static DH keys in the HOST ID parameters of the
R1 and the I2 messages and derive a shared symmetric Master
Key. To authenticate this key agreement, both peers prove the
correctness of the Master Key using message authentication
codes (MAC) in the I2 and R2 messages.

The peers additionally exchange secrets in the EN-
CRYPTED KEY parameter of the I2 and R2 messages in
order to generate a fresh session key for the protection of
application data (e.g., via IPsec) in each handshake. These
secrets are encrypted with the Master Key and thus are
concealed from on-path network entities. The peers then derive
the payload protection key based on the exchanged secrets.

To protect the expensive cryptographic operations and
the state creation during the protocol handshake, HIP DEX
employs a DoS protection mechanism with dynamically ad-
justable, cryptographic puzzles, similar to HIP. The Responder
thereby chooses a random puzzle challenge I and a difficulty
K. It includes these values in the PUZZLE parameter of the R1
message (see Fig. 2). When receiving a puzzle, the Initiator has
to find a solution J such that an AES-based CMAC operation
over the concatenation of the challenge I , the peers’ HITs, and
the solution J generates an output where at least the K lowest
order bits are zero. The Initiator then responds I , J , and K
in the SOLUTION parameter of the I2 message. Finally, the
Responder verifies the puzzle with a single CMAC operation.

III. PUBLIC-KEY-RELATED PROTOCOL DESIGN ISSUES

In this section, we identify performance and security is-
sues in end-to-end IP security protocols that apply public-
key cryptography in constrained environments. We specifically
quantify impacts for HIP DEX and structure our discussion
along the following three aspects: i) the choice and strength of
the cryptographic primitives, ii) the consideration of resource
heterogeneity in the provided DoS protection mechanisms, and
iii) the suitability of the packet retransmission strategies.

A. Cryptographic Primitives

Given a concise protocol handshake, the resource demands
of public-key primitives remain as the determining factor
for the applicability of IP security protocols on constrained
devices. Specifically, expensive handshake operations block



the CPU, preventing the device from sleeping to save energy
or processing other network packets or sensor readings.

HIP DEX forfeits the use of public-key signatures and
ephemeral DH keys to reduce the computation overhead.
Instead, it directly uses static DH keys for peer authentication
and key agreement purposes. The handshake thus only involves
a single cryptographic operation per peer instead of four,
namely two for signature generation and verification and two
for ephemeral DH key generation and key agreement. Hence,
the protocol design trades the perfect forward secrecy and the
non-repudiation properties of HIP for a significantly decreased
protocol handshake overhead. Our evaluation shows that HIP
DEX thereby reduces the handshake run-time by about 3.4 s1.

Protocol issue: Already when using the smallest elliptic
curve defined for HIP DEX (i.e., SECP160R1), a single DH
operation dominates the handshake run-time with a processing
time of about 0.7 s per peer. This overhead will further increase
in the near future as larger curves of at least 224 bits are
recommended by NIST to protect sensitive information after
2013 [6]. The smallest curve defined for HIP DEX satisfying
this requirement is NIST P-256. However, this curve incurs a
considerably higher computational overhead of about 1.9 s per
peer. Hence, the need for public-key-based operations in the
handshake of IP security protocols must further be reduced in
order to preserve device resources for the actual use case.

B. DoS Protection

Highly diverse device and network resources in IoT sce-
narios, i.e., memory, processing power, and bandwidth, enable
a single unconstrained adversary such as an Internet host to
mount DoS attacks against the IP security protocol handshake
on a constrained device. Specifically, an adversary can initiate
multiple parallel handshakes and misuse expensive protocol
operations in order to exhaust computation and memory re-
sources. Likewise, handshakes initiated in short succession
continually occupy these resources at the target device.

Predominantly, two protocol mechanisms are used to
counter DoS attacks against the protocol handshake. DTLS
and IKE use a cookie mechanism that requires the Initiator of
a handshake to echo a Responder-defined nonce before the Re-
sponder invests computation or memory resources. This allows
to blacklist malicious nodes if they can be uniquely identified
by their IP address. However, IPv6-based communication, as
envisioned for IoT scenarios, affords individual hosts to be
multi-addressed or to change addresses over time, e.g., for
privacy reasons [7]. As a result, a single attacker can pretend
to represent multiple hosts and thus thwart cookie-based DoS
protection mechanisms. Puzzle-based mechanisms as used by
HIP DEX thus employ a different technique. By asking the
Initiator to solve a cryptographic puzzle, the Responder can
demand adjustable resource commitments before processing
expensive handshake messages. Hence, the Responder can
render the connection establishment expensive for a malicious
Initiator that initiates handshakes in parallel or in succession.

Protocol issue: Puzzle-based DoS protection mechanisms
invariably impact legitimate Initiators that aim to set up a
connection with a Responder that is currently under attack.

1We refer to Section VI for detailed information about our evaluation setup.

More precisely, the Responder requires the same resource
commitments from legitimate and malicious Initiators since
it cannot distinguish them during the handshake. High puz-
zle difficulties thereby are uncritical for unconstrained le-
gitimate Initiators, but quickly become impractical to solve
for constrained Initiators, thus causing handshakes to fail.
Vice versa, low puzzle difficulties account for constrained
legitimate Initiators but do not protect against an unconstrained
adversary. Hence, DoS protection in the IoT needs to require
a small resource commitment from constrained devices, while
demanding a high resource commitment from unconstrained
devices. However, IP addresses, host identities, and cipher
suites do not carry sufficient semantic meaning about the peer
to make an informed decision regarding the puzzle difficulty.

C. Retransmission Strategies

Protocols commonly define retransmission strategies to
handle corrupt or lost packets. These strategies aim for the
opposing goals of minimizing premature retransmissions as
well as reducing handshake delay caused by packet loss.
Especially in constrained network environments, premature
retransmissions are highly undesirable because they waste
energy resources on the forwarding path and occupy the
wireless medium. However, transmission and processing times
of individual messages for IP security protocols may vary
significantly depending on device capabilities. For example,
our evaluation shows that an ECDH operation on a desktop-
class device only requires about 15 ms compared to 656 ms
on a constrained device. As a result, response messages that
also signal reception acknowledgement may be received with
non-negligible delays if they involve expensive operations.

Protocol issue: IP security protocols commonly specify and
implement fixed timeout-based retransmission mechanisms
that do not account for the processing time of public-key
operations. HIP DEX specifies an aggressive strategy that
triggers retransmissions at time intervals in the order of mil-
liseconds. However, public key operations may take seconds
to complete on constrained devices. Hence, overly aggressive
strategies inevitably cause retransmissions despite successful
packet reception. In contrast, DTLS recommends a timeout of
1 sec that is to be doubled at each retransmission. While this
strategy provokes less premature retransmissions, it quickly
delays the protocol handshake if consecutive retransmissions
are lost. Hence, adaptive retransmission strategies are required
that take the message processing time at the peer into account.

IV. TAILORING HIP DEX TO THE IOT

We now present our three complementary and lightweight
protocol extensions for HIP DEX that aim to alleviate the iden-
tified protocol limitations. First, we amortize expensive public-
key-based operations of an initial protocol handshake across
multiple connections with a comprehensive session resumption
mechanism (Section IV-A). Second, we extend the HIP DEX
puzzle mechanism to allow for collaborative DoS protection
in network scenarios with high resource heterogeneity (Sec-
tion IV-B). Finally, we propose an adaptive retransmission
mechanism that accounts for the varying processing time of
handshake operations on constrained devices (Section IV-C).
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Fig. 3. Initial session establishment and abbreviated session resumption hand-
shake. State can be offloaded during the session tear down. Brackets denote
optional messages and parameters that depend on the session resumption type.

A. HIP DEX Session Resumption

Our main goal in this section is to amortize the cost of
the DH key agreement in the HIP DEX handshake across
multiple connections. We therefore propose a novel session
resumption mechanism for HIP DEX that is inspired by similar
mechanisms in TLS [8] and IKE [9]. The basic idea of session
resumption is that peers only perform expensive protocol
operations once during the initial session establishment. The
storage of session state after the session teardown then enables
efficient re-authentication and re-establishment of the secure
payload channel in an abbreviated session resumption hand-
shake. We also incorporate the Responder-side state-offloading
session resumption of DTLS [10] and IKE [9] in our design.

In contrast to the existing mechanisms, we specifically
tailor our approach to the constraints of IoT scenarios. More
precisely, we propose a flexible session resumption mechanism
that features an additional state-offloading type for constrained
Initiators and an explicit negotiation of the session resumption
type. Moreover, by delaying state-offloading until the session
tear down, we enable constrained devices to store limited ses-
sion state for their peers. Most importantly, our design aims at
minimizing memory requirements of inactive sessions as well
as reducing transmissions for the connection re-establishment.

Initial session establishment. As shown in Fig. 3, the
communicating peers negotiate the session resumption type
during the initial HIP DEX handshake. We thereby consider
three possible types: i) state compression, where both peers
maintain their own state across connections, ii) Initiator-
side state-offloading, where the Responder stores the ses-
sion state on behalf of the Initiator, and iii) Responder-
side state-offloading, where the Initiator stores the session
state on behalf of the Responder. The Initiator signals its
supported session resumption types to the Responder in the
RESUMPTION NEGOTIATION parameter of the I2 message.
The Responder then indicates the selected type in the RE-
SUMPTION NEGOTIATION parameter of the R2 message.
To support legacy peers that do not support our extension,
no session resumption is performed if at least one peer does
not include the negotiation parameter in the handshake. The
handshake then concludes as defined for the standard protocol.

If the peers agree on Initiator-side state-offloading, the
Initiator compresses and encrypts its active session state and
includes this state in the SESSION TICKET parameter of
the CLOSE message. It then discards the active session state
similar to a standard session tear down. On reception of the
CLOSE message, the Responder compresses its own state
and stores it along with the received offloaded state. With
Responder-side state-offloading, the Responder includes its
session state in the SESSION TICKET parameter of the
CLOSE ACK message. If neither peer is willing to store
offloaded session state in addition to its own compressed state,
the peers can still agree on session resumption using their
respective compressed state by setting this resumption type in
the RESUMPTION NEGOTIATION parameter. In this case,
no session tickets are transferred in the tear down exchange.

We intentionally delay state-offloading until the end of
the session lifecycle to relieve peers from storing offloaded
state while the session is still active. This design trait en-
ables even constrained devices to store limited session state
for constrained peers as the compressed and offloaded state
combined is smaller than the state of an active session (see
Section VI-A). Still, a peer may temporarily loose connectivity,
thus preventing the negotiated state-offloading. In this case, the
peers fall back to session resumption with state compression
to re-establish the session independent of the negotiated type.

Abbreviated session resumption handshake. The abbrevi-
ated session resumption handshake consists of three cases that
depend on which peer stores session state and which peer
triggers the new connection establishment. We first describe
the abbreviated handshake with state compression and detail
the handshakes with state-offloading afterwards.

The session resumption handshake with state compression
consists of the mandatory messages and parameters of the
second handshake depicted in Fig. 3. The Initiator indicates
this resumption type in the RESUMPTION NEGOTIATION
parameter of the I1 message. Moreover, the I1 message con-
tains a fresh, encrypted secret for payload protection and a
MAC. The encryption and the MAC operation are both based
on the Master Key derived from the stored session state.

When receiving the I1 message, the Responder inspects
the RESUMPTION NEGOTIATION parameter and retrieves
its own compressed state. To validate the message integrity
and to authenticate the Initiator, it re-computes the Master
Key and verifies the MAC. If this verification is successful,
the Responder concludes the handshake with a new SR R1
message that confirms the resumption type and includes a new
secret for payload protection. The additional MAC parameter
enables the Initiator to verify the message integrity and to
authenticate the Responder. Note that the standard R1 message
contains mandatory parameters that are not required in the
abbreviated handshake, e.g., the peer’s public key. We thus use
a dedicated, tailored message type to reduce transmissions.

For Responder-side state-offloading, the Initiator addi-
tionally includes the Responder’s session state in the SES-
SION TICKET parameter of the I1 message. Upon recep-
tion, the Responder verifies the correctness of the received
state and re-computes the Master Key to verify the included
MAC parameter. Notably, the Responder only creates ses-
sion state if the prior verifications were successful. The Re-



sponder then generates an SR R1 response and includes an
ECHO REQUEST parameter to determine the freshness of
the abbreviated handshake. The ECHO REQUEST parameter
requires the Initiator to echo the received challenge value in
the ECHO RESPONSE parameter of the SR I2 message. The
successful verification of the challenge and of the MAC in
the SR I2 message assures the Responder of the handshake
freshness because only the legitimate Initiator can compute
correct MACs for messages with Responder-specified content.

Finally, for session resumption with Initiator-side state-
offloading, the Initiator sends a standard I1 message as it is
unaware of the previous session. When receiving this message,
the Responder looks up its own compressed state for the
previous connection as well as the Initiator’s offloaded state.
If such state exists, the Responder assumes the role of the
Initiator and sends an I1 message as in session resumption with
Responder-side state offloading. The original Initiator changes
its role and the handshake concludes as described above.

Required session state information. While session state is
implementation and scenario-specific, it must meet a num-
ber of requirements to ensure a secure session resumption.
Specifically, it has to include the peer’s HIT as its crypto-
graphic identifier. Otherwise, an adversary would be able to
impersonate a peer by using the peer’s HIT in an abbreviated
session resumption handshake with state offloading. Further-
more, session state needs to include the agreed DH key and
the negotiated cipher suite of the first handshake in order to re-
compute the Master Key and to encrypt signaling information.

Most importantly, offloaded state must be encrypted and
integrity protected. The corresponding key should only be
known to the offloading peer. Possession of this key would
allow an adversary to create forged encrypted states and to
impersonate other devices towards the offloading peer. We
propose the use of AES CCM for encryption and integrity
protection, thus allowing to leverage potential AES hardware
support on IoT devices. Finally, ticket invalidation, e.g., due
to node compromise or de-authorization of a peer, may be
achieved by changing the state encryption key.

Integration in DTLS and minimal IKEv2. The presented
explicit session resumption type negotiation and session re-
sumption with Initiator-side state-offloading can also be inte-
grated with the existing mechanisms for DTLS and minimal
IKEv2. As we specify in an IETF companion document [11],
the session resumption negotiation may be included in DTLS
as an extension of the ClientHello and the ServerHello hand-
shake messages. Moreover, the standardized session resump-
tion behavior can remain unchanged for state compression
or Responder-side state-offloading. For Initiator-side state-
offloading, the Initiator may re-use the NewSessionTicket
message to transfer its session state. To resume a session, the
Responder can then send the session state to the Initiator in
the SessionTicket extension of the ServerHello message.

For minimal IKEv2, our session resumption negotiation
may occur in the first two messages of the IKE handshake (i.e.,
the IKE SA INIT exchange). Similar to DTLS, the protocol
can stay unchanged for state compression and Responder-
side state-offloading. For Initiator-side state-offloading, the
Initiator can offload session state in the ticket notification
payload in the first message of the IKE AUTH exchange. To

resume the session, the stateless Initiator first sends a regular
IKE SA INIT message as it is unaware of the Responder’s
support for the IKE session resumption mechanism. This
message additionally contains a notification payload informing
about the Initiator’s session resumption support. The Respon-
der then replies with an IKE SA INIT response that includes
a TICKET ACK notification payload. As a result, the Initiator
starts the existing IKE SESSION RESUME exchange and the
Responder transfers the session state in the response message.

B. Collaborative Puzzle-based DoS Protection for the IoT

In this section, we tailor the HIP DEX puzzle mechanism
to constrained environments. Specifically, the HIP DEX speci-
fication recommends a puzzle difficulty of zero during regular
network operation and a non-trivial puzzle difficulty during a
DoS attack against the handshake. However, mechanisms to
detect attacks and to select an appropriate puzzle difficulty
that protects IoT devices remain open issues. To fill this gap,
we propose a simple attack detection and difficulty selection
strategy based on a sliding window mechanism. We propose a
complementary handshake extension that allows an on-path
gateway to collaborate in the puzzle difficulty selection to
account for device and network heterogeneity. For further
information about specific handshake and parameter structures,
we refer to a second IETF companion document [12].

Attack detection and difficulty selection strategy. To detect
attacks against the expensive DH operation or the state cre-
ation process, we propose that Responders maintain a sliding
window that counts the number of performed DH operations
within a fixed-length window period of, e.g., 1 min. Within this
window period, Responders allow for a configurable number
of legitimate handshakes and set the puzzle difficulty for these
handshakes to zero. We represent this number by a device
and scenario-specific puzzle issuing threshold. If this threshold
is exceeded, Responders demand non-zero puzzle difficulties.
Issuing puzzles based on the number of DH operations also
covers attacks targeting scarce memory resources as the DH
operation precedes the state creation process.

When issuing a puzzle with a non-zero difficulty, a Respon-
der strives to push expensive operations to the next window pe-
riod if its current threshold is exceeded. Thus, it sets the puzzle
difficulty for the Initiator to require approximately one window
period to solve the puzzle. To derive this difficulty value,
we propose that a resource-constrained Responder bases the
difficulty selection on its own resources as a first indicator of
the peer’s capabilities. A resource-constrained Responder then
issues puzzles that protect against other resource-constrained
devices, e.g., a malicious Initiator that is located in the same
IoT domain. However, these puzzles do not defend against
attacks from unconstrained peers outside the IoT domain.

Collaborative difficulty selection. To also consider uncon-
strained peers in the difficulty selection, we observe that an on-
path gateway commonly has further information about the peer
when a handshake crosses network boundaries. Specifically,
the gateway can distinguish handshakes as originating from
a local trusted network or an unknown and thus untrusted
Internet hosts based on the switching port that the hand-
shake was received on. Moreover, authenticated tunnels to
the gateway allow to classify remote devices or networks as



benign. Thus, we extend the HIP DEX handshake with a
notification mechanism that enables a gateway to add a new
VIA UNTRUSTED NETWORK parameter to a traversing I1
message if the peer does not belong to a trusted network
domain. If this parameter is set, the Responder issues a high
puzzle difficulty. Otherwise, it sets a low puzzle difficulty,
assuming the peer to be located in a trusted domain. Thus,
the impact of a DoS attack from an untrusted network on
legitimate handshakes decreases significantly.

If the resource-constrained device constitutes a legitimate,
but untrusted Initiator for a Responder that is located in a
foreign network domain, the Responder issues a high puz-
zle difficulty. As a result, handshakes would not conclude
successfully. However, if the Responder also implements our
proposed attack detection and difficulty selection strategy, the
peers can still successfully complete the handshake with a
moderate delay. To this end, the Initiator drops a puzzle that
it cannot solve in a timely fashion and requests a new puzzle
from the Responder, thus effectively probing the Responder
for a window period with low load and consequently a puzzle
difficulty of zero. These periods typically occur during an
attack when the adversary is busy solving a puzzle. Still, as
an adversary can behave similar to the Initiator, this puzzle
solving strategy denotes a race for a low threshold value.

Integration in DTLS and minimal IKEv2. DTLS and
minimal IKEv2 both specify the use of a cookie mechanism to
protect their protocol handshakes against DoS attacks. We pro-
pose to replace these cookie mechanisms with a cryptographic
puzzle and to use the provided cookie as the puzzle challenge.
An on-path gateway then can inspect the unprotected, initial
handshake messages and assist with the puzzle difficulty
selection similarly to our proposed extension for HIP DEX. As
the main effort for this integration, we identify the additional
specification of a parameter that conveys the puzzle solution.

C. Retransmission Mechanism Refinements

In this section, we first discuss the disadvantages of
an aggressive retransmission strategy in constrained network
scenarios, e.g., as proposed by HIP DEX. We then present
our adaptive retransmission mechanism that employs multiple
worst-case estimates for the retransmission timeout.

With HIP DEX, the Initiator is responsible for the retrans-
mission of lost I1 and R1 messages (see Figure 2), while the
Responder simply replies to each received I1 message. HIP
DEX thereby specifies aggressive retransmissions with a fixed
timeout value in the order of milliseconds, regardless of the
network topology or the current network conditions. However,
a fixed timeout that is lower than the round-trip time in
situations with high network load inevitably causes premature
I1 retransmissions by the Initiator and generates unneeded R1
responses by the Responder. This negative effect is further
aggravated by the fact that R1 messages have to be fragmented
into several link layer packets, thus placing an increased
burden on the network. Hence, in contrast to the aggressive
retransmission strategy in HIP DEX, we adopt the more
conservative strategy of HIP [5] for I1 and R1 messages and
base the timeout value on the worst-case anticipated round-
trip time. This timeout can, for example, be derived based on
the maximum RTT of ping messages. As the Responder does
not perform expensive operations during the initial part of the

handshake, it suffices to consider this worst-case network delay
in a retransmission strategy for I1 and R1 messages.

The fragmentation of R1 messages necessitates an addi-
tional adaptation of the retransmission mechanism. Specifi-
cally, the Initiator may already have received parts of the
R1 message before the retransmission timeout expires. If this
part contains HIP DEX header information, the Initiator can
correlate it to the corresponding handshake and infer that its
original I1 message has been received correctly. Hence, the re-
maining R1 response may still be in transit. To exploit this fact,
we propose to pre-fetch message information of incomplete
messages from the lower protocol layers before triggering an
I1 retransmission. This allows to delay the retransmission and
to wait for further message fragments to arrive. Pre-fetching
information across layers is typically feasible on constrained
devices as their implementations often use cross-layer interac-
tions for efficiency reasons. We also employ pre-fetching for
later messages in the protocol exchange that exceed the size
of a single frame. Note that additional protection mechanisms
must be applied at the lower layers to defend against attacks
targeting HIP DEX packet fragmentation [13].

In contrast to I1 and R1 messages, the cryptographic
processing costs of I2 messages at the Responder may be sig-
nificant. Hence, I2 messages inevitably cause retransmissions
if they exceed small fixed or network delay-based timeouts.
Thus, the Initiator has to take processing cost into account.
We propose to split the dual role of R2 messages, i.e., infor-
mation carrier and acknowledgment (ACK). To this end, the
Responder sends a NOTIFY message to the Initiator before it
commences any cryptographic processing. This message serves
as an ACK for the I2 message reception. After the I2 message
processing has finished, the Responder additionally sends the
regular R2 response message. As a result, the Initiator can
first base its I2 retransmissions on the worst-case anticipated
round-trip time similar to I1 and R1 messages. Once the
NOTIFY message has been received, the Initiator starts a
second timeout that is based on the worst-case anticipated
computation time of an I2 message at a resource-constrained
Responder. For example, the evaluation data presented in this
paper can be used as an indicator for this timeout value.

In conclusion, our proposed NOTIFY message allows to
use a network delay-based timeout for retransmissions of a
lost I2 message, while employing a second processing-based
timeout for lost R2 messages. However, NOTIFY messages
increase transmission costs and may be lost as well. Thus,
unconstrained Responders should omit NOTIFY messages as
they are able to quickly reply to all handshake messages.

Integration in DTLS and minimal IKEv2. For the adoption
in DTLS, an Alert message can be used to acknowledge
message reception before performing expensive handshake
operations. As DTLS performs retransmissions per flight, this
Alert message should also contain the sequence numbers of
already received flight messages. On receipt, the node deduces
that its peer currently performs an expensive protocol operation
and only needs to retransmit missing flight messages in case
the worst-case anticipated computation time is exceeded.

Our proposed ACK signaling does not directly translate to
minimal IKEv2 as out-of-band notification messages during
the first two protocol messages are specified to cause a



handshake failure. Yet, the Responder is required to perform
an expensive DH operation during this protocol phase. If this
restriction was lifted during the standardization process of
minimal IKEv2, out-of-band notifications could be used in
addition to network delay-based timeouts and pre-fetching.

V. SECURITY CONSIDERATIONS

We now briefly discuss attacks that adversaries inside or
outside the IoT domain can mount against our extensions.

Replaying an abbreviated session resumption handshake.
An eavesdropping adversary may replay an overheard session
resumption handshake with compressed state as it contains
no handshake-specific information that ensures freshness. This
would allow the adversary to re-establish a previous session
and consume scarce memory resources at the peer without
prior authentication. To mitigate this attack, the session state
contains a session resumption counter that is incremented after
each successful session resumption and is used as a modifier
when re-computing the Master Key. Hence, the Master Key
and the MACs differ for each session resumption handshake.
This allows to identify a replayed message because its MAC
has been generated with an old Master Key.

DoS attacks against the session ticket mechanism. Any
networked adversary could flood a target device with I1
messages containing forged session tickets, thus generating
high decryption and verification load on the target device. To
efficiently identify forged tickets that can be generated without
restrictions on the adversary, an offloading peer should include
a (random) plaintext key identifier in its tickets. An eaves-
dropping adversary could still reproduce these key identifiers
in forged tickets from overheard legitimate session tickets.
However, the adversary can generate similar computation load
at the target device with the standard HIP DEX protocol
by forging integrity-protected messages for overheard session
establishments. Hence, session resumption does not open a
new vector of attack. Finally, an eavesdropping adversary
could replay an overheard session ticket in an abbreviated
handshake with state offloading, thus misleading the offloading
peer into re-establishing a previous session. However, the
challenge-response mechanism in the abbreviated handshake
enables the Responder to quickly expose this attack.

On-path attacks against our puzzle extension. The gateway
adds a new parameter to the I1 message to notify a con-
strained Responder that it should issue a puzzle difficulty for
a potentially unconstrained peer. This parameter is not crypto-
graphically bound to the gateway. Hence, an on-path adversary
could trick the Responder into issuing a puzzle difficulty for
an untrusted network domain, although both peers are located
in trusted domains. The resulting high puzzle difficulty would
unnecessarily delay the handshake completion. However, an
on-path adversary could also completely prevent the handshake
by dropping handshake messages instead of forwarding them.

Forged message reception acknowledgements. The Respon-
der cannot protect the integrity of a NOTIFY-based reception
acknowledgement as it has not yet derived the Master Key
when sending this message. Hence, an eavesdropping adver-
sary can spoof reception acknowledgements for overheard
I2 messages. However, spoofed acknowledgements do not
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Fig. 4. Message sizes of two handshakes with an intermediate session tear
down (marked with a grey background) for the standard HIP DEX protocol
and for session resumption with state compression as well as with Initiator-
side state-offloading. The dashed lines indicate the maximum content of a
fragment with respect to the HIP DEX message size.

enable the adversary to prevent the handshake from com-
pleting successfully. Instead, the adversary can merely delay
the handshake. This delay only occurs if the legitimate R2
message is actually lost on the forwarding path. Furthermore,
the achievable delay is bounded by the worst-case anticipated
computation time configured at the target device.

VI. EVALUATION

For our evaluation, we implemented the HIP DEX protocol
and the proposed protocol extensions for Contiki OS. We used
Zolertia Z1 motes with a 16 MHz MSP430 micro-controller,
8 kB of RAM, 92 kB of ROM, and an IEEE 802.15.4 radio in-
terface as our IoT devices. Moreover, we ported our HIP DEX
implementation to Linux and implemented a simple firewall
based on netfilter for the gateway functionality of the proposed
puzzle extension. The Linux machines were equipped with an
Intel Core i7 870 CPU. Our implementations use the relic2

library for all public-key-based operations with the elliptic
curve SECP160R1. Note that with larger curves especially the
results for our proposed session resumption mechanism and
our retransmission refinements further improve.

Regarding transmission overheads, we assumed link layer
security in the IoT domain. We thus decreased the available
payload size at the IPv6 adaptation layer (i.e., 6LoWPAN)
by 21 bytes. The first fragment then contains up to 32 bytes
and subsequent fragments at maximum 72 bytes of HIP DEX
message content. By considering link layer security, our results
show worst-case fragmentation for our proposed extensions.

A. HIP DEX Session Resumption

To quantify the improvements of the session resumption
mechanism, we measured the transmission overhead and the
processing time of two consecutive standard HIP DEX hand-
shakes with an intermediate session tear down. We compared
this baseline against measurements for state compression as
the best-case and Initiator-side state-offloading as the worst-
case session resumption type with respect to the achievable
overhead reductions. Our results denote the average over 100
measurements with two wirelessly connected Z1 motes.

Transmission overhead. As shown in Fig. 4, session resump-
tion with state compression marginally increases the message

2http://code.google.com/p/relic-toolkit/
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sizes of the initial handshake and the session tear down
exchange. However, the subsequent session resumption only
requires 2 messages in the abbreviated handshake compared
to 4 messages in a standard handshake. Each resumption and
teardown cycle requires 360 bytes (i.e., 8 fragments), compared
to 632 bytes (i.e., 15 fragments) for standard HIP DEX. State
compression hence improves the transmission overhead by
43.0 % and reduces the number of fragments by 46.7 %.

For session resumption with Initiator-side state-offloading,
the session tear down exchange requires additional 64 bytes to
transfer the Initiator’s session state. As a result, the CLOSE
message requires a further fragment (see Fig. 4). The ab-
breviated handshake concludes after 4 messages, reducing
the number of fragments by 1 (see third message of the
second handshake in Fig. 4). In total, each resumption and tear
down cycle requires 648 bytes (i.e., 15 fragments). Hence, state
offloading marginally increases the transmission overhead by
about 2.5 % with an identical number of transmitted fragments.

Processing time. Fig. 5 shows the average performance gain
of session resumption compared to a standard handshake and
session tear down. The standard deviation for all results was
below 0.15 ms. The ECDH operations constitute the primary
overhead of the standard handshake, requiring 656.25 ms per
peer. The standard handshake amounts to 1469.41 ms for both
peers combined. This compares to only 92.47 ms for the abbre-
viated session resumption handshake with state compression
and to 159.17 ms for Initiator-side state-offloading. This 65 ms
difference mainly stems from the state decryption and MAC
operations for the additional messages in the latter case.

Notably, state compression has no performance impact on
the session tear down exchange. In contrast, state offloading
requires 8.42 ms for state encryption and slightly increases
the MAC overhead due to the increased message size of
the CLOSE message. Thus, Initiator-side state-offloading in-
creases the processing overhead of the session tear down
by 64.1 %. To put these numbers into perspective, session
resumption reduces the computation overhead of a complete
session lifecycle by at least 85.6 % and by 93.7 % at best.

Memory trade-offs. For state compression, both peers main-
tain 38 bytes of session state across connections to achieve
the above improvements. This denotes a compression of an
active session state (151 bytes) by 74.8 %. State-offloading lifts
this storage requirement for one peers and requires the other

peer to store 57 bytes of encrypted session state in addition to
its own compressed state. Both states combined still denote
a reduction of 37.1 % compared to an active session. Hence,
session resumption with state-offloading is beneficial for both
peers compared to active sessions over long periods of time.
Session resumption thus considerably reduces the overhead
of IP security protocols, especially for applications involving
periodic communication patterns or keep-alive messages.

B. DoS Protection

For the evaluation of our puzzle-based DoS protection
extension, we considered a network setup consisting of three
IoT devices D1, D2, and D3 and two Linux machines M1 and
M2. M1 represented a malicious Initiator that was connected
to M2 via Ethernet. M2 was additionally connected to D1 via
USB. In combination, D1 and M2 represented the gateway in
our network setup. The remaining two IoT devices constituted
a legitimate Initiator (D2) and Responder (D3) that commu-
nicated wirelessly with each other and with the gateway.

We set the sliding window size to 64 s, i.e., the size of
a uint64 t. Furthermore, we considered 5 handshakes per
window period to be legitimate for a Responder, e.g., a
CoAP server, and set the puzzle issuing threshold accordingly.
Finally, we aimed for puzzles difficulties that prevent a single
host from performing more than one handshake per window
period during an attack. Thus, we measured the average
computation time for puzzles with varying difficulties on an
IoT device and on a Linux machine. Our results indicate a
puzzle difficulty of 14 for IoT devices (64.56 s on average) and
22 for unconstrained hosts (60.44 s on average). Higher puzzle
difficulties will be required as computing power increases.

With the above settings, we evaluated the impact of a DoS
attack on a legitimate handshake between D2 and D3. Specif-
ically, M1 successively flooding D3 with handshakes. During
this attack, we measured the number of successful handshakes
between D2 and D3 over 15 min. We considered three different
configurations: i) puzzles with difficulty 14, ii) puzzles with
difficulty 22, and iii) end-point-specific difficulties of 14 or 22
assisted by the gateway with our extension. As a baseline, we
also counted successful handshakes without an attack.

We found that, with a fixed puzzle difficulty of 22, the
number of legitimate handshakes decreased from 332 (no
attack) to 7 as these puzzles were commonly insolvable for
D2. At the same time, we observed a puzzle-induced decrease
of attack handshakes. More precisely, the Responder D3

performed as few as 7 ECDH operations per window period for
the adversary and the legitimate Initiator combined. Hence, the
high puzzle difficulty successfully protected the Responder’s
scarce computation resources during the attack. A fixed puzzle
difficulty of 14 decreased the number of legitimate handshakes
to 8. This is the result of the undemanding puzzle difficulty
for M1 (0.21 s on average) and the corresponding high load
at D3 with a maximum of 29 ECDH operations per window
period. In contrast, assisted by the gateway, the Responder
selectively set a puzzle difficulty of 14 for D2 and of 22 for
M1. As a result, the legitimate peers performed 14 handshakes.
Note that this number is close to our goal of allowing only
a single handshake per peer and window period during an
attack. Simultaneously, the DoS attack of M1 only caused a
total of 7 ECDH operations per window period. Thus, our DoS
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Fig. 6. Handshake transmission overhead for the different retransmission
strategies and rising packet loss probability.

protection extension defends a constrained Responder against
an unconstrained peer, while still supporting communication
between legitimate peers in the same IoT domain.

Finally, we considered the case when a constrained Initiator
communicates with a Responder in a foreign network domain.
This Responder issues puzzles with a difficulty of 22 for the
Initiator if the puzzle issuing threshold is exceeded. However,
the puzzle difficulty decreases to 0 while the adversary is busy
solving the puzzle. Hence, by dropping puzzles that could not
be solved and by requesting a new ones, the Initiator was able
to successfully establish a secure connection with the Respon-
der. Specifically, the constrained Initiator was able to perform
16 successful handshakes within a 15 min timespan. Without
our puzzle solving strategy, such high puzzle difficulties would
cause the handshake to fail due to excessive computations.

C. Retransmission Refinements

We implemented the HIP DEX and the DTLS retrans-
mission strategies along with our proposed extension and
evaluated their performance in the Cooja network simulator
for Contiki. Specifically, we measured the overall transmitted
bytes and the handshake run-time for end-to-end loss prob-
abilities between an Initiator and a Responder ranging from
0 % to 100 % for individual packet fragments. We decided
for simulation over a real testbed to compare the different
retransmission strategies for well-defined packet loss proba-
bilities without side-effects on the wireless medium. Results
denote the average over 5000 runs for each retransmission
mechanism and loss probability combination.

We observed an average round-trip time (RTT) of about
30 ms in a simulation run without network load. Still, we
set the aggressive timeout of the standard HIP DEX re-
transmission mechanism to 100 ms as lower values caused
excessive premature I2 retransmissions for this strategy with
high processing delays at the simulated nodes. Likewise, we
configured the worst-case anticipated RTT of our proposed
retransmission extension to 100 ms to account for network and
processing delay under load conditions. Finally, we set the
worst-case anticipated computation time to 750 ms according
to the processing time discussed earlier (see Fig. 5).

As shown in Fig. 6, the aggressive HIP DEX retransmission
strategy requires 1570 bytes on average, i.e., 333 % of a hand-
shake without retransmissions, even without packet loss. This
overhead exclusively stems from premature retransmissions.
In contrast, the DTLS-based retransmission strategy largely
avoids premature retransmissions and outperforms the other

0 10 20 30 40 50 60 70 80 90

loss ratio (%)

0

10

20

30

40

50

h
an

d
sh

ak
e

ti
m

e
(s

)

10000
20000
30000
40000
50000

HIP DEX

DTLS

Our approach

Fig. 7. Handshake run-time for the different retransmission strategies
depending on the packet loss probability.

retransmission strategies regarding the transmission overhead.
However, this comes at the cost of a quickly increasing
handshake delay (see Fig. 7). Finally, our proposed retrans-
mission mechanism shows a considerable improvement over
standard HIP DEX with respect to the overall transmitted bytes
and keeps retransmissions low for small loss probabilities.
Transmissions are as low as 526 bytes (i.e. a full handshake
and a NOTIFY message) for a loss probability of 0 %. Inter-
estingly, the handshake run-time with our proposed extension
outperforms the aggressive HIP DEX strategy with respect to
the processing overhead as peers are less burdened with the
processing of large handshake messages. Thus, we conclude
that our proposed extension improves retransmissions in lossy
IoT network scenarios compared to the considered strategies.

D. RAM and ROM Overhead

To derive RAM and ROM estimates, we analyzed the Con-
tiki binaries of standard HIP DEX and our extensions with the
msp430-size tool. Table I shows the marginal tradeoffs in case
of our DoS protection extension and the refined retransmission
mechanism. Session resumption adds a moderate overhead
as a tradeoff for the significant handshake transmission and
processing improvements. Overall, our proposed extensions
require less than 5.6 kB of ROM and about 0.2 kB of RAM.

VII. RELATED WORK

For related work, we distinguish three research directions:
i) alternative cryptographic primitives and delegation architec-
tures, ii) protocol mechanisms related to our extensions, and
iii) further protocol optimizations in the context of the IoT.

Polynomial schemes offer an alternative to public-key-
based primitives in DTLS and HIP [14], [15]. However, they
rely on a central entity that distributes a polynomial share to
each node in the network. Thus, while efficiently providing
security in isolated network scenarios, non-trivial coordination
between administrative domains is required to secure com-
munication between devices of these domains. In contrast,
we focus on standard primitives that afford the exchange of

Extension ROM RAM

Contiki with HIP DEX 58733 7042
+ Session resumption 63263 (+4530) 7198 (+156)
+ DoS protection 59369 (+636) 7066 (+24)
+ Retransmissions 59159 (+426) 7066 (+24)
All combined 64325 (+5592) 7246 (+204)

TABLE I. RAM AND ROM REQUIREMENTS FOR OUR PROPOSED
EXTENSIONS IN BYTE. NUMBERS IN BRACKETS DENOTE ADDED
OVERHEAD COMPARED TO CONTIKI WITH STANDARD HIP DEX.



public keys for authentication purposes and propose protocol
extensions to improve their applicability in the IoT.

Recently, several delegation-based architectures were pro-
posed for HIP [16], [17], [18]. In each approach, the private
key of the Initiator is split into multiple blocks. Proxies inside
the IoT domain then perform public key-based operations on
a private key block assigned by the Initiator. However, while
these approaches reduce the computation cost at a constrained
Initiator, they add a considerable number of network messages
to the handshake. Furthermore, they require a trusted third
party and pre-shared keys between the Initiator and the proxies.
In contrast, our protocol extensions focus on minimizing
computation as well as transmission costs and make minimal
assumptions about the existing infrastructure. We believe that
our protocol extensions can further improve the delegation
schemes, e.g., using our session resumption mechanism.

With respect to related protocol mechanisms, several TLS
extensions allow an Initiator to cache static Responder infor-
mation and to omit this information during the next hand-
shake [19]. However, mere caching of, e.g., the peer’s public
key, does not reduce expensive cryptographic operations in
each handshake. Moreover, we recently highlighted session
resumption as a possible solution to reduce the overhead of a
certificate-based DTLS handshake in [20]. This paper extends
on previous work by contributing a detailed description and
evaluation of the proposed session resumption mechanism.

In [21], the authors identify the HIP puzzle as an effec-
tive DoS protection mechanism for the IoT and propose to
consider the signal strength of received packets to detect an
unconstrained adversary inside the IoT domain. Their detection
mechanism is complementary to ours and could be incorpo-
rated into our attack detection strategy. Dean et al. [22] propose
to extend the TLS handshake with a cryptographic puzzle and
efficiently prevent attacks against the handshake. In contrast
to our work, they do not consider resource heterogeneity.

Further IP security protocol optimizations for the IoT
predominantly focus on header compression to reduce the
transmission overhead, e.g., for HIP DEX [23] and IPsec [24].
Complementary to our work, the achieved compression further
improves the applicability of HIP DEX and IPsec as the default
payload protection mechanism for HIP DEX in the IoT.

VIII. CONCLUSION

In this paper3, we analyzed the impact of public-key-based
primitives in DTLS, HIP DEX, and minimal IKEv2. We iden-
tified three major challenges for IoT scenarios. First, public-
key operations require significant resources from a constrained
device. Hence, a full handshake should only be performed
infrequently. Second, expensive public-key-based operations
aggravate the risk of DoS attacks against constrained devices,
even with a single, unconstrained adversary. Thus, DoS pro-
tection mechanisms for the IoT must account for resource
heterogeneity. Third, retransmission strategies have to account
for both, varying processing times of handshake messages and
high packet loss in constrained wireless networks.

We presented three lightweight protocol extensions for HIP
DEX to address these challenges. As our evaluation confirms,

3This research is funded by the DFG Cluster of Excellence on Ultra High-
Speed Mobile Information and Communication (UMIC).

our proposed session resumption mechanism substantially re-
duces computation, memory, and transmission requirements
compared to standard HIP DEX. Moreover, our collaborative
puzzle-based DoS protection mechanism accounts for device
and network heterogeneity and successfully protects IoT de-
vices against more powerful adversaries. Lastly, our adaptive
retransmission mechanism allows for a timely handshake con-
clusion despite packet loss. In combination, our extensions
considerably improve the applicability of HIP DEX in the IoT.
Notably, our proposed extensions also generalize to the wider
scope of DTLS and minimal IKEv2.
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