
Regaining Insight and Control on SMGW-based
Secure Communication in Smart Grids

Jens Hiller
Communication and Distributed Systems

RWTH Aachen University
Aachen, Germany

hiller@comsys.rwth-aachen.de

Karsten Komanns
Communication and Distributed Systems

RWTH Aachen University
Aachen, Germany

komanns@comsys.rwth-aachen.de

Markus Dahlmanns
Communication and Distributed Systems

RWTH Aachen University
Aachen, Germany

dahlmanns@comsys.rwth-aachen.de

Klaus Wehrle
Communication and Distributed Systems

RWTH Aachen University
Aachen, Germany

wehrle@comsys.rwth-aachen.de

Abstract—Smart Grids require extensive communication to
enable safe and stable energy supply in the age of decentralized
and dynamic energy production and consumption. To protect the
communication in this critical infrastructure, public authorities
mandate smart meter gateways (SMGWs) to be in control of
the communication security. To this end, the SMGW intercepts
all inbound and outbound communication of its premise, e.g.,
a factory or smart home, and forwards it on secure channels
that the SMGW established itself. However, using the SMGW
as proxy, local devices can neither review the security of these
remote connections established by the SMGW nor enforce
higher security guarantees than established by the all in one
configuration of the SMGW which does not allow for use case-
specific security settings. We present mechanisms that enable
local devices to regain this insight and control over the full
connection, i.e., up to the final receiver, while retaining the
SMGW’s ability to ensure a suitable security level. Our evaluation
shows modest computation and transmission overheads for this
increased security in the critical smart grid infrastructure.

Index Terms—Communication Security, Smart Meter Gate-
way, Smart Grid, TLS, Policy Language, Proxy, Internet of
Things

I. INTRODUCTION

©2019 AEIT. Personal use of this material is permitted. Permission from AEIT must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Energy grids have to manage instabilities due to highly
decentralized energy production in times of renewables as
well as higher varying consumption caused by electrification
of road traffic and smart homes. The high decentralization
requires extensive communication between the stakeholders
in smart grids to maintain a safe and stable energy supply.

This paper has received funding from the CONNECT project as part
of the Electronic Components and Systems for European Leadership Joint
Undertaking. Our work in the CONNECT project has received support from
the European Unions Horizon 2020 research and innovation programme under
grant agreement no. 737434 as well as the German Federal Ministry of
Education and Research (BMBF) under funding reference no. 16ESE0154.
This paper reflects only the authors views and the funding agencies are not
responsible for any use that may be made of the information it contains.

Energy
Meters

Energy Harvesting ManufacturerMachines

SMGW
Electricity
Supplier

Fig. 1. Smart meter gateways (SMGWs) interconnect local and remote
communication partners. Thereby, they act as TLS proxies, rendering devices
unable to assess the connection security from the SMGW to the final target.

Specifically, in addition to today’s adjustment across large-
scale energy producers and grid operators, also the energy-
harvesting and consuming machines of private or corporate
end-consumers need to be controlled to realize fine-grained
control on energy flows. Similarly, manufacturers must keep
software up to date and retrieve long-time diagnostic data.

For this communication in smart grids, security and privacy
is a fundamental requirement. Secure communication retains
the privacy and business secrets of private and corporate end
users, e.g., energy meter statistics or the existence of specific
machines. Moreover, it prevents attackers from tampering with
the critical smart grid infrastructure and is thus a key objective
to guarantee a safe and stable energy supply in smart grids [1].

Smart meter gateways (SMGWs) can take an important
role to ensure secure and privacy-preserving communication
in smart grids. As illustrated in Figure 1, SMGWs inter-
connect end-user premises, e.g., factories or smart homes,
with back-ends of major smart grid stakeholders, e.g., grid
operators, energy producers, and manufacturers of energy
consuming or harvesting machines. To leverage this position
to ensure communication security and privacy in smart grids,
the German Federal Office for Information Security (BSI)
developed security guidelines [2] for any communication that



passes through an SMGW. Most importantly, they require any
communication to use Transport Layer Security (TLS) [3]
which is the prevalent security protocol used in the Internet [4].
However, typically TLS provides end-to-end security, i.e., it
secures the communication from the sender up to the final
receiver, not allowing any entity on the communication path
to decrypt or modify data. In contrast, the BSI mandates the
SMGW to control the security of in- and outbound commu-
nication by intercepting and forwarding communication data.
To this end, local devices and the SMGW use splitTLS [5],
i.e., the local device in the end-user premise establishes a TLS
connection to the SMGW which in turn establishes a (second)
TLS connection to the final receiver. Subsequently, the SMGW
forwards data between both TLS connections acting as proxy
for any communication between end-user premise and entities
in the smart grid back-end. This way, the SMGW can control
the security parameters of both connections and, e.g., remove
personal identifiable information to protect user privacy [2].

However, splitTLS has been shown to risk communication
security, e.g., by inadvertently reducing the security due to the
use of weaker ciphers, too broad acceptance of authenticating
certificates, or security problems of the implementation [6].
For the end-points, these problems remain hidden as they
control only the connection security up to the proxy, but
lack information on the security between proxy and final
receiver. To overcome these limitations of splitTLS, we present
splitTLS-insight and splitTLS-control which enable local de-
vices to assess and control the security properties of the remote
connection between SMGW and final receiver. While doing so,
our approaches still retain the benefits of using the SMGW
as proxy which enforces suitable communication security and
privacy. More specifically, our contributions are as follows:

• We analyze the security of smart grid communication as
proposed by the BSI and reveal the problems of its TLS-
proxy approach which does not account for use case-
specific security and privacy requirements.

• We first enable local devices to review the security
properties of connections from the SMGW up to the
final receiver by relaying handshake information. Second,
we allow them to use policies to instruct the SMGW to
increase the security for these connections.

• We implement and evaluate the performance of our
design showing that we achieve increased communication
security for smart grids with only modest runtime and
transmission overheads.

II. RISKS AND LIMITS OF TLS-PROXIES IN SMART GRIDS

Smart meter gateways (SMGWs) do not only aggregate
and report energy meter data for billing purposes, but more
importantly also interconnect any energy consumer or pro-
ducer on the local end-user premise with back-end services
in the smart grid (cf. Figure 1). These back-end services
range from firmware update services offered by machine
manufacturers up to reporting systems for energy consumption
or production estimates that enable grid operators to offer a
safe and stable energy supply. It is thus important to guarantee

Client SMGW ServerPossibly
Weak SecurityStrong Security

No Insight or Control Attacker

Fig. 2. Security guidelines of the BSI require the SMGW to act as proxy
for TLS connections. This does not allow the client to assess or control the
connection security between the SMGW and the server.

communication security such that attackers cannot influence
the management of the critical smart grid infrastructure by
manipulating communicated data.

To this end, the German Federal Office for Information
Security (BSI) mandates the use of Transport Layer Security
(TLS) [3] for all connections [2]. However, outdated imple-
mentations or weak TLS configurations could still pose a risk.
Thus, to guarantee a suitable level of security for TLS connec-
tions, the BSI requires the SMGW to intercept all connections
between devices in the local network and back-end services
using splitTLS: To connect to a back-end service, a local
device first establishes a secure TLS connection to the SMGW
and instructs the SMGW to extend this connection up to the
desired back-end service. Second, the SMGW establishes a
TLS connection to the back-end service and forwards data
between both ends. This way, the SMGW is in full control on
the security of both connections and thus can enforce a suitable
security level, especially for connections over the Internet.

However, using the SMGW as TLS-proxy also bears risks
for connection security. The desired security level for com-
munication depends on the sensitivity of data, e.g., personal
identifiable information or critical control information require
a higher security level than arguably less critical status in-
formation. As the SMGW lacks knowledge on the purpose of
the communication, it handles any communication in the same
way, i.e., regardless of the sensitivity of data. As methods
which provide higher security typically decrease the perfor-
mance due to more heavyweight computations, the SMGW
uses a compromise that yields good security and acceptable
performance. Thus, the uniform handling of all connections
by the SMGW today does not take into account the use case
knowledge only available at the (local) devices themselves.

As shown in Figure 2, local devices, however, cannot assess
if the security properties of the remote TLS connection match
the requirements of the use case as any information on the
remote connection is hidden by the SMGW. Similarly, the BSI
design does not enable local devices to modify the security
of the remote connection to account for use case-specific
security requirements. Specifically, local devices should be
able to check for or request stronger security for the remote
connection in the following ways: (i) For specifically sensitive
data, local devices should be able to enforce the use of stronger
encryption algorithms, e.g., longer key sizes for the Advanced
Encryption Standard (AES), or future more secure ciphers.
For data that requires long-term security such as personal
information, the secure key negotiation should use public key
mechanisms that also secure data in face of future availability

2



of quantum computers. (ii) Similarly, restricting the acceptable
cryptographic hash algorithms, e.g., to the recent version
SHA-3 [7], achieves higher security in the face of upcoming
attacks against SHA-1 and expected future attacks against
SHA-2. (iii) With respect to security against down-grade
attacks, local devices should also be able to enforce the use
of (optional) TLS extensions that prevent down-grade attacks
or even require the use of TLS 1.3 with its enhanced security
methods regarding down-grade attacks. (iv) Likewise, several
features during authentication via certificates have influence
on the connection security. Local clients should thus be able
to verify certificates of the remote connection themselves to
evaluate the corresponding security features. First, a local
client should be able to verify the issuer of a certificate to
assess the trust in this issuer. Problems regarding a large
number of trusted issuers are already evident from the huge
WebPKI [8]. Specifically, a single trusted but misbehaving
issuer risks the security of the whole system. In contrast to the
SMGW, the local client can have more detailed knowledge on
which issuers can be trusted for a specific domain, e.g., when
communicating with infrastructure of their own manufacturer.
Second, Signed Certificate Timestamps (SCTs) ensure that a
certificate is logged in a public certificate transparency log [9].
As these logs enable independent audition of certificates [9],
[10], a certificate with SCT can be considered more secure
which makes this a valuable feature that local devices should
be able to check. (v) Finally, local devices should also be able
to control the performance of the TLS connection, e.g., by
requesting the use of the recent version TLS 1.3 with its en-
hanced performance features. Such higher performance can be
required in disaster scenarios that require fast communication
to counter physical risks for the infrastructure.

In summary, TLS-proxy functionality of SMGWs is useful
to enforce a suitable security and privacy level for smart grid
communication. However, it does not allow for a use case-
specific higher connection security. To overcome this issue,
we propose to enable local devices to review the security
properties of the remote connection by relaying corresponding
information, e.g., the server certificate and negotiated ciphers,
and to allow them to employ policies to communicate their
use case-specific security demands to the SMGW.

III. INSIGHT AND CONTROL FOR REMOTE CONNECTIONS

To tackle the discussed disadvantages of splitTLS, we
enhance splitTLS by a two-fold approach that allows the local
device (client) to assess and control the security of the remote
connection that the SMGW established. First, splitTLS-insight
enables the client to assess the established security. To this end,
the SMGW reports properties of the connection such as the
certificate or selected cipher suite to the client after both TLS
connections have been established (Section III-A). Thus, the
client can perform similar checks as if it would establish a TLS
connection to the target directly, e.g., verify the certificate.

Second, we design splitTLS-control which uses policies
sent by the client to the SMGW to inform the latter about
(increased) security requirements for the connection to the

Client SMGW Server
SOCKS handshake

TLS handshake

SOCKS TLS options
+ Insight Support + Policy

connect(Server)

TLS* handshake
Policy Handling

Response
+ Insight Info

Data Data

Fig. 3. SplitTLS with our splitTLS-insight (gray bold) and splitTLS-control
(black bold) mechanisms. In splitTLS-control, the policy configures the TLS
connection setup between SMGW and server (TLS*).

target (Section III-B). With this mechanism in place, clients
cannot only assess, but actively control the security of the
remote connection established by the SMGW. For both ap-
proaches, we utilize the existing trust relationship between
client and SMGW in smart grids, i.e., the local client trusts
the SMGW to report correct values and to follow the provided
policy. Optionally, we can alleviate this trust requirement when
additionally adapting the final receiver such that it testifies the
report of the SMGW as we detail in our security discussion.

A. Regaining Insight on TLS Connections with Proxies

To enable local clients to assess the security of remote
connections, we provide it with the information of the cor-
responding connection establishment. More specifically, we
instruct the SMGW to relay important handshake information
to the client when the SMGW successfully established the
remote connection. As we show in Figure 3, this additional
communication seamlessly integrates into the splitTLS con-
nection setup. To establish a splitTLS connection with a
remote target over the SMGW, the client first establishes a
SOCKS [11] connection to the SMGW as it will later use the
SOCKS protocol to inform the SMGW about the final target.
To secure further communication (including the information
on the target), client and SMGW subsequently establish their
TLS connection. Following, client and SMGW exchange TLS-
specific SOCKS options. Yet, these options only support, e.g.,
a specific negotiation for handling UDP traffic [12], but not
the insight or control features which are required for the smart
grid use case. With our splitTLS-insight design, we extend
this exchange of options to negotiate the relaying of splitTLS
information between local client and SMGW. To this end, the
client signals in its options message that it expects the SMGW
to relay remote connection setup information and the SMGW
acknowledges its support in the response.

To then initiate the extension of the connection up to the
final receiver, the client sends a SOCKS-connect message
with target address information to the SMGW which in turn
establishes a TLS connection to the target. The SMGW reports
the success of this connection establishment back to the
client within a Response message. We integrate the relaying
of splitTLS-insight information into this message, i.e., we
append, e.g., TLS version information, the negotiated cipher,

3



and all certificates presented by the target for its authentication.
When the client receives this data, it performs similar checks
as if it would establish a TLS connection itself. For example,
it checks if the TLS version and cipher provide suitable
security for its use case, checks the validity of the certificate
using its own set of trusted root store certificates, and checks
optional features such as inclusion of the certificate in a public
certificate transparency log (by checking for an SCT). Only if
all these checks pass, the client starts to exchange data over
the established connection. Otherwise, it aborts the connection
with a corresponding handshake failure error.

SplitTLS-insight allows the local client to assess the security
of the remote connection on the splitTLS path. This enables
the client to reject a connection that does not meet its security
requirements. However, relaying information does not yet
allow a local device to adapt the connection security to its
needs. To also realize this control, we introduce a policy-based
exchange of security demands for splitTLS (splitTLS-control).

B. Enabling Control on Security of Remote Connections

To account for use case-specific security demands, clients
must be able to control the security of the remote connection.
To this end, we allow them to instruct the SMGW to establish a
connection with higher security guarantees. More specifically,
we design clients to encode their requirements on the remote
TLS connection security in a policy which they send to the
SMGW during the setup of the splitTLS connection. The
SMGW evaluates this policy and adapts its handshake behavior
accordingly, e.g., only offering the most current TLS version
or advertising support for only exceptionally strong ciphers.

The deployment as well as the update of policies is done by
the machine manufacturer which can tie them to the different
communication use cases and corresponding security demands.
Optionally, the machine owner may supply its own policies
to strengthen the security based on its own preferences.
We first detail the policy-based splitTLS-control connection
establishment, before we discuss requirements for a policy
language to achieve high efficiency in the constrained smart
grid environment, especially discussing the Compact Privacy
Policy Language (CPPL) [13] as fitting candidate. Also, we
detail the management, distribution and updates of policies.

1) Policy-based Connection Security Negotiation: To use
policies for control of the remote connection security, we
further extend the SOCKS options exchange as shown in
Figure 3. If both, client and SMGW, signal support for
splitTLS-control in the SOCKS TLS options exchange, the
client proceeds by sending the policy to the SMGW. To comply
with the policy, the SMGW adapts the configuration for the
TLS connection to the target. For example, it removes ciphers
that do not fulfill the policy from the supported ciphers list
and only advertises TLS versions that are compatible with the
policy. After the following TLS establishment for the remote
connection, and as in the traditional splitTLS approach, the
SMGW reports the success to the client which can start to
exchange application data with the desired target.

policy

encodingsecurity expectations

domain parameters

Client ServerSMGW

Manufacturer

User

Fig. 4. (CPPL) policy management in splitTLS-control: Local devices send
use case-specific policies provided by their manufacturer or user to the SMGW
which configures the TLS connection to the backend service respecting the
policy. Users may also deploy device-specific policies at the SMGW.

Due to the trust between local devices and the SMGW, the
local device can rely on the correct usage of the policy by
the SMGW. Optionally, a client can, however, still combine
splitTLS-insight and splitTLS-control to also verify the secu-
rity settings of the remote connection itself (cf. Figure 3).

2) Policy Management and Deployment Considerations:
The efficient use of policies for remote connection security
negotiation has several requirements. To cope with the limited
processing capabilities of clients and SMGWs, especially con-
sidering the high number of connections handled by the latter,
(i) the processing overheads for policy use must be small.
Furthermore, as many connections have to be established,
also (ii) the additional bandwidth required for the policy
transmission should be limited. Finally, (iii) stakeholders, i.e.,
machine manufacturers or device owners, must be able to adapt
policies to new security developments.

To address these requirements, we select a policy lan-
guage that provides good performance in environments with
constrained resources and propose a management process
for policies in smart grid environments. More specifically,
we propose to use the Compact Privacy Policy Language
(CPPL) [13] to realize control on remote connection security.
This policy language was originally proposed to negotiate
expectations of users on the handling of their data by cloud
services. It provides a very compact representation of policies
for their efficient transmission and thus adds only marginal
bandwidth overhead to connection establishment. To this end,
it uses a domain specific compression mechanism to transform
a human readable representation of the policy into an efficient
binary format that is used for transmission. Second, based
on this compressed policy representation, CPPL offers a very
efficient evaluation mechanism that combines the policy with
technically supported features, e.g., the capabilities of a cloud
computing server, to derive instructions for the data handling.

To use CPPL in smart grids, i.e., to negotiate remote
connection security properties to the SMGW, we designed
corresponding domain parameters for the domain-specific
compression. These domain parameters enable us to create
policies that specify TLS connection properties such as al-
lowed ciphers, certificate issuers, or the mandatory presence
of an SCT (cf. Section II). As we show in Figure 4, these
policies are specified by the trust-worthy device manufacturer
and already compressed at its side such that devices already
obtain the compressed policy. Thus, resource-constrained de-

4



vices save the overhead for compression and can directly
send the compressed policy to the SMGW during connection
establishment (cf. Section III-B1). To derive suitable TLS
connection settings, the SMGW combines the capabilities of
its TLS implementation with the received policy using CPPL’s
policy evaluation mechanism which yields instructions for
the TLS configuration. Subsequently, the SMGW leverages
these instructions to set TLS handshake options as well as
callbacks that check server-provided information, e.g., the
server certificate, with respect to conformance with the policy.

Optionally, also the device owner who has control over the
SMGW can add its own policies to control security for specific
devices. To this end, the SMGW can handle device-specific
policies for connected devices as provided by the device
owner. Notably, we store manufacturer controlled policies at
the client itself to flexibly adapt the policy based on the
connection’s use case. To also enable device owners to deploy
use case-specific policies, the device itself needs to provide an
interface to install these policies as the SMGW stays oblivious
regarding the actual use case of a connection. Finally, to update
a once deployed policy, a manufacturer or device owner can
supply an updated policy to its devices or the SMGW.

IV. EVALUATION

To show the feasibility of splitTLS-insight and splitTLS-
control, we implemented it based on CPPL [13] as well as
OpenSSL and deployed it on two NXP MCIMX7SABRE (2x
ARM Cortex-A7@1 GHz, 1 GB RAM), one acting as local
device and one acting as SMGW. Furthermore, we deployed
a server based on OpenSSL on a full grade desktop machine
(Intel i5@3.3GHz, 16GB RAM). Using this testbed, we eval-
uate the connection establishment runtime. Additionally, we
analyze packet sizes to assess the transmission overhead.

A. TLS Insight and Control is Feasible for Client and SMGW

To analyze the performance, we compare the connection es-
tablishment runtime of splitTLS-insight and splitTLS-control
with the traditional BSI splitTLS approach and show the
results in Figure 5. We report on the arithmetic mean of 100
measurements and show 99% confidence intervals.

Considering the connection setup and negotiation between
the local device and the SMGW (C→SMGW), the runtime
is dominated by the TLS establishment (202 ms) including
corresponding certificate checks (45 ms) which both do not
differ between all approaches. The negotiation of support and
use of splitTLS-insight and splitTLS-control does not add
overhead as it is piggybacked on already existing messages.
Only the subsequent transmission of the policy in case of
splitTLS-control introduces a marginal overhead of 1 ms.

When the client instructed the SMGW to connect to the
server, splitTLS-control first requires the SMGW to process
the policy to configure TLS accordingly. For our smart grid
specific policy, this processing requires 12 ms and is thus
again marginal compared to the inevitable overhead of TLS
connection setup. SplitTLS-insight does not add any additional
processing in this phase (compared to the traditional system).

B I C B I C B I C B I C B I C

0

50

100

150

200

250

300

ru
nt

im
e

[m
s]

C→ SMGW SMGW SMGW→ S SMGW→ C C

General TLS Policy Assessment Certificate

Fig. 5. Connection setup runtime for traditional splitTLS (B) compared
to splitTLS-insight (I) and splitTLS-control (C). SplitTLS-insight introduces
only small overhead at the client (certificate check). SplitTLS-control intro-
duces small overhead at SMGWs as they have to process the policy.

Next, the SMGW establishes the TLS connection to the
server (SMGW→S). SplitTLS-insight does not alter this ex-
change thus achieving the same performance as in the tradi-
tional case. For splitTLS-control, the actual overhead depends
on the changed security settings and added TLS features as
requested by the policy. As splitTLS-control only enables or
configures already existing TLS mechanisms, we still achieve
typical TLS connection setup times for the remote connection
and possible overhead is inevitable to achieve the desired
security level for the specific use case of the connection.

After setting up the remote TLS connection, the SMGW in-
forms the client about the success (SMGW→C). For splitTLS-
insight, it also sends the information on the remote connection
that enable the client to assess the corresponding security level.
This results in a negligible overhead of 1 ms (also observed
for splitTLS-control as we activated the (optional) splitTLS-
insight features for our splitTLS-control measurements).

Before sending application data, the client analyzes the
received insight information when splitTLS-insight is enabled
(and optionally for splitTLS-control). These checks are dom-
inated by the certificate validation (45 ms) which is in line
with the corresponding runtime during the (unchanged) TLS
handshake with the SMGW. After all, they enable the client
to check if the required security level for its use case is met.

The server uses the standard TLS implementation and thus
only encounters overhead corresponding to stronger TLS secu-
rity as configured by policies. Similarly, our approaches do not
alter the exchange of application payload except for traditional
TLS configuration changes such as the use of stronger ciphers.
In summary, the runtime overhead for splitTLS-insight and
splitTLS-control is well-manageable for all peers including
local devices and SMGWs, enabling smart grids to profit from
both, a guaranteed minimal connection security level enforced
by the SMGW and a use case-specific security control.

B. Low Transmission Overhead

Our mechanisms realize insight and control for splitTLS
with additional information exchanges, namely negotiation of
support, relaying of handshake information and providing poli-
cies. The negotiation of insight and control support requires

5



only two additional bytes, each, as we integrate it into the
SOCKS TLS options exchange (cf. Figure 3). For splitTLS-
insight, the transmission overhead totals to feasible 1971 byte,
dominated by the certificate information. Furthermore, the
policy transmission for splitTLS-control requires additional
320 bytes (depending on the policy size) to allow clients to
increase the security of the remote TLS connection.

Summing up our evaluation, our approaches allow clients
the former unavailable assessment and control of the remote
connection security, thus enabling a use case-specific higher
connection security for the critical smart grid infrastructure.

V. SECURITY DISCUSSION

Most importantly regarding security, our approaches only
allow for a (use case-specific) higher security level than tra-
ditionally established by the SMGW. To this end, the SMGW
does not allow policies to decrease the security level.

Similar to traditional splitTLS, our design does not achieve
end-to-end security. Specifically, the SMGW can read and alter
any communication. However, this is part of the requirements
set forth by the BSI which requires the SMGW to be able
to inspect traffic and enforce a minimal level of security [2].
Importantly, the SMGW is a highly regulated device that is
generally trusted by the participants in the smart grid.

Optionally, also the server can send a signed report on
the connection security to the client such that the client can
verify the correctness of the properties reported by the SMGW.
However, due to the above noted trust relationship between
SMGW and local devices, we deem this as unnecessary
in the regulated smart grid scenario. Still, our approaches
are necessary to enable use case-specific and device-specific
configurations of security levels for which the SMGW lacks
any knowledge in the traditional approach.

Considering the connection security, we note that our design
uses only standardized TLS features and thus does not alter
the security features that TLS provides. After all, our design
enables clients to assess the former invisible security of the
remote connection and even allows for the former unavailable
use of use case-specific and device-specific security levels.

VI. RELATED WORK

One line of research focuses on integrating middlebox func-
tionality into the end-to-end security protocol TLS [14], [15].
However, these approaches do not support middleboxes to be
in full control of the connection. Instead, the communication
end-points have full control on what content middleboxes can
read or modify. This renders the SMGW unable to enforce
minimal connection security and thus does not comply with
the requirements as set forth by administrative bodies for smart
grid communication. Furthermore, most of these approaches
require changes to the server, while our mechanisms only
require changes to local devices and SMGWs.

We employ policies to control the security of the remote
connections. The use of policy languages to efficiently ne-
gotiate rules or instructions with remote entities was already

proposed for other domains, e.g., data handling, resource man-
agement, network configuration, or failure handling in cloud
computing [13], [16]. Henze et al. performed an extensive
analysis of existing policies with respect to requirements in
the cloud computing domain [13]. Our decision to use CPPL
as policy language in smart grids is based on this analysis.

VII. CONCLUSION

Secure communication in smart grids guarantees a safe and
stable energy supply as it prevents attackers from tampering
with the critical smart grid infrastructure. To this end, smart
meter gateways (SMGWs) ensure a suitable security for all
connections by acting as proxy for all inbound and outgoing
communication of an end-user premise, e.g., a smart home or
factory. However, currently this proxy-approach is incapable of
addressing use case-specific security requirements, e.g., higher
security demands for personally identifiable information, and
does not allow local devices to assess the connection security
between the SMGW and the final communication partner.

To tackle these shortcomings, we propose mechanisms that
provide insight and control for TLS connections with proxies.
Specifically, we enable local devices to assess the security of
the remote connection by relaying corresponding information
from the (trusted) SMGW. Our policy-based approach further
allows local devices, which know about the use case-specific
security demands, to instruct the SMGW to use a specific
(stronger) security configuration for its connection to the final
communication partner. Our evaluation shows that our design
achieves insight and control for smart grid communication
with modest runtime and transmission overheads for connec-
tion establishment. Thus, also resource-constrained devices in
the smart grid can easily adopt our approaches.

Our solution still allows the SMGW to guarantee security
but in addition enables clients to assess the full connection se-
curity and makes a use case-specific security control possible.
Thus, we overall realize a better tailored approach to secure
communication in the critical smart grid infrastructure.

REFERENCES

[1] S. Soltan, P. Mittal, and H. V. Poor, “BlackIoT: IoT Botnet of High
Wattage Devices Can Disrupt the Power Grid,” in USENIX Security,
2018.

[2] German Federal Office for Information Security, “Technische Richtlinie
BSI TR-03109-1, Version 1.0,” Tech. Rep., 2013, german.

[3] E. Rescorla and T. Dierks, “The Transport Layer Security (TLS) Protocol
Version 1.2,” RFC 5246, 2008.

[4] D. Naylor et al., “The Cost of the ”S” in HTTPS,” in CoNEXT, 2014.
[5] J. Jarmoc and D. Unit, “SSL/TLS interception proxies and transitive

trust,” in Black Hat Europe, 2012.
[6] X. de Carné de Carnavalet and M. Mannan, “Killed by proxy: Analyzing

client-end TLS interception software,” in NDSS, 2016.
[7] NIST Computer Security Division, “SHA-3 Standard: Permutation-

Based Hash and Extendable-Output Functions,” Tech. Rep., 2014.
[8] R. Holz et al., “The SSL Landscape: A Thorough Analysis of the x.509

PKI Using Active and Passive Measurements,” in ACM IMC, 2011.
[9] B. Laurie, A. Langley, and E. Kasper, “Certificate Transparency,” RFC

6962, 2013.
[10] Q. Scheitle et al., “A First Look at Certification Authority Authorization

(CAA),” SIGCOMM CCR, vol. 48, no. 2, May 2018.
[11] M. D. Leech, “SOCKS Protocol Version 5,” RFC 1928, 1996.
[12] M. VanHeyningen, “Secure Sockets Layer for SOCKS Version 5,” IETF,

Internet-Draft draft-ietf-aft-socks-ssl-00, 1997, work in Progress.

6



[13] M. Henze et al., “CPPL: Compact Privacy Policy Language,” in ACM
Workshop on Privacy in the Electronic Society, 2016.

[14] H. Lee et al., “maTLS: How to Make TLS middlebox-aware?” in NDSS,
2018.

[15] D. Naylor et al., “Multi-Context TLS (mcTLS): Enabling Secure In-
Network Functionality in TLS,” in ACM SIGCOMM, 2015.

[16] J. Hiller et al., “Giving Customers Control Over Their Data: Integrating
a Policy Language into the Cloud,” in IEEE IC2E, 2018.

7


